Trajectory scaling test — single character

The purpose of this test is to demonstrate how the trajectory generated by Maria System changes depending on the number of phases (n).

The same input character was used in all cases:

Test character: "D"

Each result shows two elements:


Test results

n = 5

+070 +052 -087 -028 -225 | -1 0 0 0 -2 -3 -1 0
n = 10

+004 -146 -249 +001 +068 -009 -008 -131 -006 +058 | 0 -4 14 8 -20 -41 -16 -6
n = 20

-116 -142 +051 -216 -055 -239 +009 +169 -138 +144 +197 -174 +077 +195 +097 +144 -233 +001 -049 -124 | 68 -159 14 58 80 10 64 -55
n = 50

-010 +027 +021 +122 +140 -017 -212 -137 +000 -002 +173 +209 -026 -100 +245 +115 -228 +132 +094 -022 +185 +170 -021 -019 -010 -243 +170 +148 +241 +220 +224 +223 +140 -115 -034 +204 +227 -232 -171 -094 +171 +181 +173 -054 +139 +136 +252 +153 +169 -214 | -73821 2886 145720 122109 8932 -155697 -145631 1241
n = 100

+194 -084 +247 +174 +062 +115 -201 +007 +107 +045 +229 -237 -148 +005 -067 -109 -145 -076 +209 -252 -006 -183 -122 +125 -074 -131 +241 +169 -094 -075 +107 -178 +225 +139 -111 +024 +127 -119 -166 -166 +212 -237 +244 +075 +231 +060 -229 +142 -182 -031 -230 +159 -069 +158 -192 -147 +215 -151 +127 +120 -011 +032 -002 +034 -100 -137 -161 -051 -023 -112 -128 -055 -241 +238 -159 -132 -130 +001 -222 +077 +156 -241 +043 -144 -082 +000 -200 -048 +118 +005 +151 -056 +184 -160 -003 +036 -068 +079 +245 -168 | -10641330246207 4785248570253 380502076764 16320636422503 -7643627209 1260006336871 2729850462933 261879049676

Conclusion

The test clearly shows that as the number of phases n increases, the trajectories become significantly more complex and the amplitude of values grows rapidly.

This means that the Maria System does not have a single fixed “power” — the system can be scaled from minimal deformation to structures of extreme complexity.

This test serves as a visual proof of the scalability of the phase trajectory model.